1,484 research outputs found

    Milky Way's Thick and Thin disk: Is there distinct thick disk?

    Get PDF
    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besancon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.Comment: 7 pages, no figure. To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalban, and M. Steffe

    The Chemical Evolution of the Galaxy: the two-infall model

    Get PDF
    In this paper we present a new chemical evolution model for the Galaxy which assumes two main infall episodes for the formation of halo-thick disk and thin disk, respectively. We do not try to take into account explicitly the evolution of the halo but we implicitly assume that the timescale for the formation of the halo was of the same order as the timescale for the formation of the thick disk. The formation of the thin-disk is much longer than that of the thick disk, implying that the infalling gas forming the thin-disk comes not only from the thick disk but mainly from the intergalactic medium. The timescale for the formation of the thin-disk is assumed to be a function of the galactocentric distance, leading to an inside-out picture for the Galaxy building. The model takes into account the most up to date nucleosynthesis prescriptions and adopts a threshold in the star formation process which naturally produces a hiatus in the star formation rate at the end of the thick disk phase, as suggested by recent observations. The model results are compared with an extended set of observational constraints. Among these constraints, the tightest one is the metallicity distribution of the G-dwarf stars for which new data are now available. Our model fits very well these new data. We show that in order to reproduce most of these constraints a timescale ≀1\le 1 Gyr for the (halo)-thick-disk and of 8 Gyr for the thin-disk formation in the solar vicinity are required. We predict that the radial abundance gradients in the inner regions of the disk (R<R⊙R< R_{\odot}) are steeper than in the outer regions, a result confirmed by recent abundance determinations, and that the inner ones steepen in time during the Galactic lifetime.Comment: 48 pages, 20 Postscript figures, AASTex v.4.0, to be published in Astrophysical Journa

    K dwarfs and the chemical evolution of the Solar cylinder

    Get PDF
    K-dwarfs have life-times older than the present age of the Galactic disc, and are thus ideal stars to investigate the disc's chemical evolution. We have developed several photometric metallicity indicators for K dwarfs, based an a sample of accurate spectroscopic metallicities for 34 disc and halo G and K dwarfs. The photometric metallicities lead us to develop a metallicity index for K dwarfs based only on their position in the colour absolute-magnitude diagram. Metallicities have been determined for 431 single K dwarfs drawn from the Hipparcos catalog, selecting the stars by absolute magnitude and removing multiple systems. The sample is essentially a complete reckoning of the metal content in nearby K dwarfs. We use stellar isochrones to mark the stars by mass, and select a subset of 220 of the stars which is complete in a narrow mass interval. We fit the data with a model of the chemical evolution of the Solar cylinder. We find that only a modest cosmic scatter is required to fit our age metallicity relation. The model assumes two main infall episodes for the formation of the halo-thick disc and thin disc respectively. The new data confirms that the solar neighbourhood formed on a long timescale of order 7 Gyr.Comment: 14 pages, 15 figures, accepted by MNRA

    Chemodynamical history of the Galactic Bulge

    Full text link
    The Galactic Bulge can uniquely be studied from large samples of individual stars, and is therefore of prime importance for understanding the stellar population structure of bulges in general. Here the observational evidence on the kinematics, chemical composition, and ages of Bulge stellar populations based on photometric and spectroscopic data is reviewed. The bulk of Bulge stars are old and span a metallicity range -1.5<~[Fe/H]<~+0.5. Stellar populations and chemical properties suggest a star formation timescale below ~2 Gyr. The overall Bulge is barred and follows cylindrical rotation, and the more metal-rich stars trace a Box/Peanut (B/P) structure. Dynamical models demonstrate the different spatial and orbital distributions of metal-rich and metal-poor stars. We discuss current Bulge formation scenarios based on dynamical, chemical, chemodynamical and cosmological models. Despite impressive progress we do not yet have a successful fully self-consistent chemodynamical Bulge model in the cosmological framework, and we will also need more extensive chrono-chemical-kinematic 3D map of stars to better constrain such models.Comment: 9 figures, 55 pages final version to appear in the Annual Reviews of Astronomy & Astrophysics, volume 5

    Abundances in the Galactic bulge: results from planetary nebulae and giant stars

    Full text link
    Our understanding of the chemical evolution of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge chemical evolution, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in chemical evolution studies.Comment: 23 pages, 15 figures, 16 pages of online material, A&A in pres

    The effects of stellar winds of fast-rotating massive stars in the earliest phases of the chemical enrichment of the Galaxy

    Full text link
    We use the growing data sets of very-metal-poor stars to study the impact of stellar winds of fast rotating massive stars on the chemical enrichment of the early Galaxy. We use an inhomogeneous chemical evolution model for the Galactic halo to predict both the mean trend and scatter of C/O and N/O. In one set of models, we assume that massive stars enrich the interstellar medium during both the stellar wind and supernovae phases. In the second set, we consider that in the earliest phases (Z <10^-8), stars with masses above 40 Msun only enrich the interstellar medium via stellar winds, collapsing directly into black holes. We predict a larger scatter in the C/O and N/O ratios at low metallicities when allowing the more massive fast-rotating stars to contribute to the chemical enrichment only via stellar winds. The latter assumption, combined with the stochasticity in the star formation process in the primordial Galactic halo can explain the wide spread observed in the N/O and C/O ratios in normal very-metal-poor stars. For chemical elements with stellar yields that depend strongly on initial mass (and rotation) such as C, N, and neutron capture elements, within the range of massive stars, a large scatter is expected once the stochastic enrichment of the early interstellar medium is taken into account. We also find that stellar winds of fast rotators mixed with interstellar medium gas are not enough to explain the large CNO enhancements found in most of the carbon-enhanced very-metal-poor stars. In particular, this is the case of the most metal-poor star known to date, HE 1327-2326, for which our models predict lower N enhancements than observed when assuming a mixture of stellar winds and interstellar medium. We suggest that these carbon-enhanced very metal-poor stars were formed from almost pure stellar wind material, without dilution with the pristine interstellar medium.Comment: 10 pages, 7 figures, accepted for publication in A&

    SPINSTARS at low metallicities

    Full text link
    The main effect of axial rotation on the evolution of massive PopIII stars is to trigger internal mixing processes which allow stars to produce significant amounts of primary nitrogen 14 and carbon 13. Very metal poor massive stars produce much more primary nitrogen than PopIII stars for a given initial mass and rotation velocity. The very metal poor stars undergo strong mass loss induced by rotation. One can distinguish two types of rotationnaly enhanced stellar winds: 1) Rotationally mechanical winds occurs when the surface velocity reaches the critical velocity at the equator, {\it i.e.} the velocity at which the centrifugal acceleration is equal to the gravity; 2) Rotationally radiatively line driven winds are a consequence of strong internal mixing which brings large amounts of CNO elements at the surface. This enhances the opacity and may trigger strong line driven winds. These effects are important for an initial value of υ/υcrit\upsilon/\upsilon_{\rm crit} of 0.54 for a 60 M⊙_\odot at Z=10−8Z=10^{-8}, {\it i.e.} for initial values of υ/υcrit\upsilon/\upsilon_{\rm crit} higher than the one (∌\sim0.4) corresponding to observations at solar ZZ. These two effects, strong internal mixing leading to the synthesis of large amounts of primary nitrogen and important mass losses induced by rotation, occur for ZZ between about 10−8^{-8} and 0.001. For metallicities above 0.001 and for reasonable choice of the rotation velocities, internal mixing is no longer efficient enough to trigger these effects.Comment: 5 pages, 4 figures, to be published in the conference proceedings of First Stars III, Santa Fe, 200

    The Evolution of Carbon and Oxygen in the Bulge and Disk of the Milky Way

    Full text link
    The evolution of C and O abundances in the Milky Way can impose strong constraints on stellar nucleosynthesis and help understanding the formation and evolution of our Galaxy. The aim is to review the measured C and O abundances in the disk and bulge of the Galaxy and compare them with model predictions. We adopt two successful chemical evolution models for the bulge and the disk, which assume the same nucleosynthesis prescriptions but different histories of star formation. The data show a clear distinction between the trend of [C/O] in the thick and thin Galactic disks, while the thick disk and bulge trends are indistinguishable with a large (>0.5 dex) increase in the C/O ratio in the range from -0.1 to +0.4 dex for [O/H]. In our models we consider yields from massive stars with and without the inclusion of metallicity-dependent stellar winds. The observed increase in the [C/O] ratio with metallicity in the bulge and thick disk lies between the predictions utilizing the mass-loss rates of Maeder (1992) and those of Meynet & Maeder (2002). A model without metallicity-dependent yields completely fails to match the observations. Thus, the relative increase in carbon abundance at high metallicity appears to be due to metallicity-dependent stellar winds in massive stars. These results also explain the steep decline of the [O/Fe] ratio with [Fe/H] in the Galactic bulge, while the [Mg/Fe] ratio is enhanced at all [Fe/H]. (abridged)Comment: 18 pages, 6 figures, submitted to Astronomy & Astrophysic

    Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium

    Full text link
    We model the abundance gradients in the disk of the Milky Way for several chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba, La and Eu), and compare our results with the most recent and homogeneous observational data. We adopt a chemical evolution model able to well reproduce the main properties of the solar vicinity. We compute, for the first time, the abundance gradients for all the above mentioned elements in the galactocentric distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in the galactocentric distance range 5-17 kpc gives a very good agreement for many of the studied elements. In addition, we fit very well the data for the evolution of Lanthanum in the solar vicinity for which we present results here for the first time. We explore, also for the first time, the behaviour of the abundance gradients at large galactocentric distances by comparing our results with data relative to distant open clusters and red giants and select the best chemical evolution model model on the basis of that. We find a very good fit to the observed abundance gradients, as traced by Cepheids, for most of the elements, thus confirming the validity of the inside-out scenario for the formation of the Milky Way disk as well as the adopted nucleosynthesis prescriptions.Comment: 11 pages, 9 figures, accepted for publication in A&

    A new method for estimating the pattern speed of spiral structure in the Milky Way

    Get PDF
    In the last few decades many efforts have been made to understand the effect of spiral arms on the gas and stellar dynamics in the Milky Way disc. One of the fundamental parameters of the spiral structure is its angular velocity, or pattern speed Ωp\Omega_p, which determines the location of resonances in the disc and the spirals' radial extent. The most direct method for estimating the pattern speed relies on backward integration techniques, trying to locate the stellar birthplace of open clusters. Here we propose a new method based on the interaction between the spiral arms and the stars in the disc. Using a sample of around 500 open clusters from the {\it New Catalogue of Optically Visible Open Clusters and Candidates}, and a sample of 500 giant stars observed by APOGEE, we find Ωp=23.0±0.5\Omega_p = 23.0\pm0.5 km s−1^{-1} kpc−1^{-1}, for a local standard of rest rotation V0=220V_0=220~km s−1^{-1} and solar radius R0=8.0R_0=8.0~kpc. Exploring a range in V0V_0 and R0R_0 within the acceptable values, 200-240 km s−1^{-1} and 7.5-8.5 kpc, respectively, results only in a small change in our estimate of Ωp\Omega_p, that is within the error. Our result is in close agreement with a number of studies which suggest values in the range 20-25 km s−1^{-1} kpc−1^{-1}. An advantage of our method is that we do not need knowledge of the stellar age, unlike in the case of the birthplace method, which allows us to use data from large Galactic surveys. The precision of our method will be improved once larger samples of disk stars with spectroscopic information will become available thanks to future surveys such as 4MOST.Comment: 10 pages, 6 figures, 4 tables, accepted for publication in MNRA
    • 

    corecore